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Diffusion of Directed Polymers 
in a Random Environment 
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We consider a system of random walks or directed polymers interacting weakly 
with an environment which is random in space and time. In spatial dimensions 
d >  2, we establish that the behavior is diffusive with probability one. The 
diffusion constant is not renormalized by the interaction. 

KEY W O R D S :  Random walks; diffusion; directed polymers; random 
environment. 

1. I N T R O D U C T I O N  

A directed polymer system is a statistical ensemble of walks or paths in Z a 
parametrized by time. The graph of the walk in Z a+~ is the "polymer" 
which moves at a constant rate in the time direction and so is called 
"directed." Directed polymers can also be defined in continuous space and 
time, but we consider here only the lattice version. We consider walks 
interacting with a weak random space-time environment, and show that 
they behave diffusively for d >  2. Directed polymers in a random environ- 
ment have appeared in recent physics literature <~) as a model for the 
interface in two-dimensional Ising models with random exchange 
interactions. In this case d =  1, and nondiffusive behavior is conjectured. 
We discuss the background more fully after defining the model and stating 
our main results. 

We consider walks co: [0, T] c~ 7 / ~  7/d such that 09(0) = 0, Ico(t + 1 ) - 
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610 Imbrie and Spencer 

09(01 = 1. Giving each walk a weight (2d) T, we obtain a probability 
measure dW~ for noninteracting walks. The function 

po(T, x) = f 8(09(T)-x) dW r (1.1) 

gives the probability that 09(T)= x. (Here 6 is a Kronecker f-function for 
2U.) The mean-square displacement from the origin for the free diffusion is 

(09(T) 2 ) r,0 - ~ xZpo( T, x) = T (1.2) 
x 

as can be easily shown using Fourier transforms. (Here x2= x~ + ... + x~.) 
The random environment is a real-valued function h(t, x) for t > 0 .  

For simplicity we take h(t, x) to be independent for each x and t, with 
h(t, x ) =  _1 with equal probabilities. This environment is weakly coupled 
to the diffusion, producing an interacting density 

p(T,x)=f f (09(T)-x)  1-I [l+eh(t,c~ dWr (1.3) 
0 < t < T  

Paths traversing space-time regions with h = 1 have enhanced weight, while 
those traversing regions with h = - 1  are suppressed. This density is 
unnormalized, and so to obtain a probability for paths to reach x at time T 
we define 

pN(T, x) = p(T, x)/Z(T) (1.4) 

Here Z(T) is the partition function 

Z ( T ) = ~ p ( T , x ) = f  I-I [l+eh(t, 09(t))]dWg (1.5) 
x O < t < ~ T  

Our results concern the mean square displacement for the interacting 
system: 

( 09( ~)2) T,h = ~ x2pN( ~, x) 
x 

T h e o r e m  1. For any d >  2, let e be small. There is a 0 > 0 such that 
the following bound holds with probability one: 

[ ( 0 9 ( T ) 2 ) T , h  - T[ <<.c(h)T 1-~ for all T > 0  (1.6) 

We see that diffusive behavior holds for almost every realization of the 
environment. Furthermore, the diffusion constant is equal to one, the same 
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as for the noninteracting system: it is not renormalized by the interaction 
as one might at first expect. 

The random constant c(h) in (1.6) is unbounded; however, we can 
estimate its distribution. This leads to the following bound: 

[ ( o ) ( T ) Z ) T , h  - T] <<.el-"T 1-~ for some 1 - r / > 0  and all T (1.7) 

Here the bar denotes averaging over the random environment h. We obtain 
these results with 0 slightly smaller than min{(d-2) /4 ,  3/4}. 

1.1. B a c k g r o u n d  

Directed polymers have received considerable attention in the recent 
physics literature. The situation in spatial dimension d =  1 is especially 
interesting, with a conjectured superdiffusive exponent ~ = 2/3 in 

(~ (T)2 )  T,h ,,~ T 2c 

This behavior was observed numerically by Huse and Henley (1) and soon 
thereafter explained heuristically by Fisher et al. (2) and Kardar and 
Nelson. ~3) The approach of ref. 2 was to exploit some special properties of 
a forced Burgers equation which the density p(t, x) obeys in the continuum 
limit. In ref. 3 a completely different argument uses replicas and a Bethe- 
ansatz solution. The exponents for the forced Burgers equation were 
actually explained some time ago in ref. 4, using renormalization group 
ideas. 

The renormalization group picture indicates that d =  1 and d =  2 are 
intrinsically strong coupling problems, with nontrivial exponents (e.g., 

= 2/3 in d =  1). Even a weak random environment becomes effectively 
strong at large distances and long times. In higher dimensions, it is likely 
that nondiffusive behavior still occurs at strong coupling, while (as we 
show in this paper) weak coupling entails diffusive behavior. Numerical 
studies support this expectation(S); see also refs. 6, 8. 

1.2. The  U p p e r  Cr i t ical  D imens ion  

It is instructive to examine fluctuations in Z(T) to see why d = 2  is 
borderline for our analysis. It is simple to rewrite (1.5) in the following 
form: 

Z(T)=f  [-[ YI[l+~h(s,x)6(co(s)-x)]dWg (1.8) 
O < s < ~  T x 
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Since each h(s, x) is an independent random variable with h = 0, we easily 
see that 

Z(T) = 1 (1.9) 

Fluctuations in Z(T) can be estimated as follows. We have 

z ( r ) 2 = f f  ]-I H {[l+eh(s ,x) f (~~ 
O < s < ~  T x 

x [1 +eh(s, x) 6(~o2(s)-x)] } dW~(col)dWg(cn2) (1.10) 

and after averaging over h, only terms quadratic in each h(s, x) survive. 
Using h 2=  1, we obtain 

Z(T)~=II H H [l+~26(~~176 
O < s < ~  T x 

x dW~(cnt) dWoT(O~2) (1.11) 

Expanding the products over s, x, we obtain a sum over subsets {si} 
of [0, T]. At each time s~, both walks must visit the same site xi, which is 
also summed over. Between the s/s ,  the two walks are independent, so 
integrating over co I and ~o2 produces two free diffusions po(si-si 1, 
xg-xi_~). After sn, the last time the walks are forced to meet, the walks 
are completely unconstrained and we use the fact that 

po(T-  s, ,  x - xn) = 1 (1.12) 
x 

The result is the following expansion: 

Z(T)  2=  2 po(si-si 1,x~-xi-1) 2 (1.13) 
n ~ O  O = s o < s l < . , . < S n < ~ T  i = 1  xi  

We have for the free diffusion 

po(s, x) <~ ce-~X~/~/sa/2 
so that 

(1.14) 

(1.15) po( s, x) 2 ~< cs -a/z 
x 

Since d > 2, each sum over si converges nicely. Taking out the n = 0 term 
(which equals unity), we obtain 

T 

[ Z ( T ) - -  1 ] 2 ~  ~ (ce)Z'<~O(e 2) (1.16) 
n = l  
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It is evident that for d >  2, fluctuations in Z(T) are quite small. This is 
an important simplifying feature of our system; it means that a good 
approximation the normalization of the measure can be ignored. In 
dimension d~<2, much larger fluctuations should occur, presumably 
behaving as a power of T. 

1.3. Diffusion with Large Probability 

A similar analysis can be performed on the numerator N(T) in the 
expectation 

~, XzpN(T, x) = (co(T)2) T,h = N(T)/Z(T) 
x 

=Z(T)- l  f 1-[ [l+eh(t, co(t))]co(T)ZdWf (1.17) 
O < t < ~ T  

We have N(T) = T, and the fluctuations can be estimated perturbatively as 
above. Skipping this analysis (which will be done in greater generality 
later), we obtain 

IN(T)  - T]  2 ~< c~2T 2 (1.18) 

Using Chebyshev's inequality, (1.16) and (1.18) imply that for any 
l > q > 0 ,  

[ Z ( T ) -  1[ ~<ce 1 " with probability at least 1 _e2~ (1.19) 

I N ( T ) -  T] ~< ce ~-~ T with probability at least 1 - e  2" (1.20) 

Hence, we have diffusion with high probability: 

(co(T) 2) T,h = T[  1 + O(e 1 - ,) ] with probability at least 1 - 2e2" 

1.4. Diffusion with Probability One 

The method we use to prove Theorem 1 is a repeated application of 
the above idea. We apply perturbative and Chebyshev estimates in such a 
way that the residual set on which atypical fluctuations occur, as in 
(1.19)-(1.20), has measure tending to zero. 

The first step is to break up the partition function as 

Z(T) = ~ Z(2 j, 2 j+~ - 1) (1.21) 
J 
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with each Z(2J, 2 J + I - 1 )  defined as a partial sum of the perturbation 
expansion for Z(T). Each Z(2J, 2 j+l)  depends only on h(s,x) for 
s~<2 j + l -  1. See (2.4) for a precise definition. Furthermore, since it 
involves graphs extending from 0 to t with t e [ 2 J ,  2J+l), perturbation 
theory yields an estimate decreasing as a power of 2 J: 

Z(2 j, 2j+1 _ 1)2., <~ (Cg)2m (2 j) (d-2)m/2 (1.22) 

By Chebyshev's inequality, (1.22) implies that 

Prob(iZ(2 j, 2i+ 1 _ 1)1 > cd  - "2  -J~ ~< g2mq2-2Jmn (1.23) 

where 0 = ( d - 2 ) / 4 +  t/, and m is a large integer, chosen after tt. If each 
term Z(2 j, 2 j + l -  1) is bounded by ce1-~2 -i~ and analogous bounds hold 
for "numerator" quantities, then (1.19), (1.20) hold and we have diffusion 
with high probability as before. 

Next let us suppose there is a large fluctuation as in (1.23). Let j be 
the first instance of such a fluctuation. We consider afresh all possible 
interacting diffusions starting at time 2 j+l  and position x with ix] ~< 2 j+ 1, 
and repeat the analysis leading to (1.22), (1.23). Note that [xl is necessarily 
<~2 j+l ,  since the path takes nearest neighbor steps and t = 2  j+l.  These 
new diffusions involve only values of h(t,x) which were not used in 
defining the event that j is the first large fluctuation. If we can establish 
diffusive behavior no matter what the starting point, then the original 
system starting at (0, 0) has diffusive behavior as well. The right-hand side 
of (1.23) decreases as a large power of 2 -J for m large, and this allows us to 
ask for small fluctuations for all possible starting points. In this way we can 
prove diffusion for most of the cases not covered by the initial estimate. 

Iterating the process, we map the measure space of the h's onto a 
stochastic process {Xj}, where Xj ~ {S, F}. Each S (success) corresponds to 
situations where bounds like (1.21) hold between times 2 j and 2 j + l -  1, 
while each F (failure) corresponds to the complementary situation. 
Diffusion holds whenever an unbroken string of successes S occurs out to 
j = oe. If we condition on any set of h's leading up to a failure F, then the 
probability that another failure occurs after a waiting time k is less than 
~2 -~'~, with ~c'> 0. Hence, an infinite string of successes will occur with 
probability one. 

2. SUFFICIENT CONDITIONS FOR DIFFUSION 

In this section we construct events which, in appropriate combina- 
tions, lead to diffusion. In the next section, we show that these conditions 
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are satisfied with probabili ty one, and so obtain the results stated in the 
introduction. 

We work with a sort of irreducible kernel from which Z ( T ) ,  N ( T )  can 
be derived. It is defined by its perturbation expansion: 

p i ( t ,  x )  = eh(si, xi)  p o ( s i -  s i_ I, x i -  x i -  1) 
n = l  i = I  s i , x  i 

•  p o ( t - s n _ l , x - x ~  1) (2.1) 

There is no problem of convergence because all sums are finite. Diagram- 
matically, pz( t ,  x )  corresponds to graphs with unintegrated h's which end 
at h(t, x )  (Fig. 1). The solid lines between two vertices denote a free 
propagator  po(sn - sn_ l, xn - xn _ 1). Notice that 

T 

Z ( T )  = 1 + ~, ~ p , ( t ,  x )  (2.2) 
t = l  x 

since by expanding the products in (1.8) and integrating over dWo  r we 
obtain the expansion (2.1) with t, x summed over. Similarly, we have 

T 

N(T) = T+ Z ~ pz(t, x) ~, y2po(T-- t, y - x )  
t = l  x y 

where we use N(T)  = T as the value of N(T) when h = 0. 

(2.3) 

h (t,x) 

h(Sn-l'xn-I ) 
". 

~ - h  (% x I) 

. / 
x (0, O) 

Fig. 1. The graphical expansion for pz(t, x). Wavy lines indicate unintegrated fields h. Solid 
lines are propagator po(s, - s, _ l, x,  - x~ _ 1 ). 
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Next we define partial sums of pr(t, x), which will be the basic 
quantities we will have to estimate. We define 

T2 

Z(T~, T2)= ~ ~ p,(t, x) (2.4) 
t = T l  x 

T2 

N(~)(TI,  T2) = ~ ~ pt(t, x ) x  ~, a = 1, 2 (2.5) 
t = T l  x 

TZ 

U(t~(T1, T2)= ~ ~ p,(t, x ) t  (2.6) 
t =  T1 x 

In the Appendix we show how to estimate the average of powers of these 
quantities. These perturbative bounds will form the basis for the 
probabilistic bounds of the next section. 

First we consider events E) ~ which will guarantee that diffusion from 
t = 0, x = 0 is well behaved. (Here j indexes scales of time, 2J.) Later we 
will consider more general events E) k) relating to diffusions beginning at 
time 2 k. Let us put 

0 = min { ( d -  2)/4, 3/4 } - q > 0 (2.7) 

and define for j = 0, 1, 2 .... 

E) ~ = {h: IZ(2 s, 2 s +/) l  ~< ce 1 - ~s-S~ and IN ~*)(2 j, 2 j + l)l ~< eel - "2~1 - ou, 

for l = 0 , 1 , 2  ..... 2 j - l ,  and for , = x  2 o r  t} (2.8) 

P r o p o s i t i o n  2.1. On the set 0 j  E) ~ we have diffusion, in the sense 
that for all T 

I(~o(T)2)v.h - TI <~ce 1 "T 1-~ (2.9) 

Proof. Any interval [ 1, T] can be represented as a disjoint union of 
intervals [ T1, T2] = [2 s, 2 s + lj], with one such interval for each j ~< log/T.  
By (2.2), (2.4), we have 

log2 T 

I Z ( T ) - I I ~ <  ~ Iz(2J, 2J+b)l<<ce~-"Z2-J~ ~-" (2.10) 
j = 0  J 

For the numerator, we use (2.3), (2.5), and (2.6) to obtain an expression in 
terms of N~')(Ti, T2) and Z(T). Since 

y 2po ( T -  t , y - -  X)= X2 + T--  t (2.11) 
y 
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we have 

log2 T 

U ( r ) -  r =  r [ z ( r ) -  1] + 
j = 0  

[N(X2~(2 j, 2 j + lj) - N(')(2 j, 2 i + lj)] 

(2.12) 

Inserting the bounds valid on 0 E) ~ we obtain 

IN(T) - TZ(T)[ <~ ~ ce ~ - " 2  ~ -o)~ <~ c ~ l - n T 1 - o  (2.13) 
J 

Combining this with (2.10), we obtain the proposition. | 

Let us consider diffusions starting at general space-time points (s, y). 
We define N~ y(T), Zs, y(T), ~d(x2)tT T2)  , Z~,y(T~, T2), etc, as before, only , ~Ts ,  y 1, x l ~  

walks start at (s, y) instead of (0, 0). More precisely, we can define 
h(t, x)  = h(t + s, x + y)  and write, for example, 

Z~h~( T~ = Z(~(  T - s) (2.14) & y~ z 

Zth~r T , T2) = Z(n)( T~ - s, T2 - s ) (2.15) s, y~  1 

p(h) t T  x)  =p~Z) (T - s ,  x -  y) (2.16) l , s ,  y k  , 

with the superscripts indicating the noise field at which quantities are being 
evaluated. Notice that Zs, y(T) depends only on h(t, x)  for s < t ~< T. Similar 
statements hold for the irreducible quantities; for example, Zs, y(T1, T2) 
depends only on h(t, x)  for s ~< t ~< T2. Putting s = 2 k - 1, we can now define 
for j >~ k a more general event 

E)k~= {h: IZs, y(2 j, 2J+l ) j  ~cse  1 "2 -( j-k)~ and 

]N~.*)(2~, 2J+l ) l  ~ CSe 1 "2 j(1-~ for * -~" X2, X,  o r  t, 

f o r / = 0 ,  1, 2,..., 2 J -  1, and for all Jy[<~s} 

n{h : [Zs ,  y0(2J, 2J+ l ) I~<ce l - "2  ~ j - k ) 0 f o r l = 0 , 1  ..... 2 j - 1  

and for Yo equal to the largest y that maximizes p(s, y)} (2.17) 

The first event is similar to E) ~ only the estimate is less restrictive, with an 
extra factor of s. The probability for violation of the bound is much smaller 
and this compensates for the fact that we consider all ]y] ~<s. Note that 
p(s, y ) = 0  for [Yl >s.  We also need bounds for N (x) because we have 
diffusions starting "off-center" at y :~ 0. The second event is used solely to 
prevent partition functions Z ( T )  from vanishing, and it is sufficient to 
consider only one site. 
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To relate the diffusion starting at (0, 0) to the ones starting at (s, y), 
we need a "semigroup property" 

p ( T , x ) = ~ p ( s , y ) p s ,  y(T,x  ), fo rany  s e [ 0 ,  T] (2.18) 
Y 

This is easily obtained by inserting 1 =~2y 8(co(s) -y)  into our defining 
expression for p(T, x). The measure dWo r factors, and the second part of 
the walk gives an independent diffusion ps, y(T, x) from (s, y) to (T, x). 
[We use subscripts to denote shifted diffusions, as in (2.16).] Note that 
(2.18) fails for pu(T, X); the normalized propagator is not the transition 
function of a Markov process. 

P r o p o s i t i o n  2.2. For any k > 0  we have diffusion on the set 
E(k) 2 k 0j~k j . W i t h s =  - l  and 0 given by (2.7), we have for all T 

I (co(T)2) r,h - T[ ~ s 2 + csd+2131 -'7T1-0 (2.19) 

ProoL On the set 0j>~k E) k) we know little about p(s, y) but we have 
good control over ps, y(T, x). We do know that p(s, y)>~O, that p(s, y ) = 0  
for l y l > s ,  and that p(s,y) is maximized at Y=Yo. Let us normalize 
p(s, y) to a probability measure on y. We obtain for the partition function 

Z(T) =Z(s)E pN(S, y) Zs,,(r) 
Y 

I [log 2 T] 1 
=Z(s)~"pN(s ,y  ) 1+ Z Zs, y(2J, 2J+b) 

y j = k  

and we can estimate this using the Z,, y bounds in (2.17). The result is 

Z(T) 1 -~( -~-  <~ ~ csel-"2-(J-k)~ <~ cse 1-~ (2.20) 
j < . k  

Z(T) >1 cs_aZ s yo(T_ s) >1 cs-a(1 - cd -~) 
Z(s) 

(2.21) 

The first bound will not prevent Z(T) from vanishing, but by noticing that 
PN( S, YO) ~ CS a, we obtain a lower bound from the single term in the sum 
over y. This is where the second condition in E) k) comes into play. 

For the numerator we have 

N(T) = Z(s) ~, pN(S, y) ~, (Y + Z) 2 ps, y(T, y + z) 
y s 

(2.22) 
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We write (y + z) 2 = z 2 .qt_ y2 + 2yz and consider the three terms in order. We 
can prove as in (2.13) that the z 2 terms is 

Z(s) Z pN(s, y)[(T-  s) zs, y(T) + O(s~'-"T ~-~ 
y 

= ( T -  s) Z(T) + Z(s) O(se 1 - q T  1-0) 

= [ ( T - s )  q- O ( s  1 + d ~ l - . T  1 - 0 ) ]  Z ( T )  (2.23) 

In the last equality we used Z(s)< O(s a) Z(T), which follows from (2.21). 
The y2 term is equal to 

( o)(s) 2 ) r,h Z( T) <~ s2 Z( T) (2.24) 

The 2yz term is equal to 

T 

Z(s )~px(s , y )  Z ~Pl, s , y ( r , y+w)~2yzpo(T - r , z -w)  
y r = s + l  w z 

= Z(s) ~ pu(S, y) ~ p,,+.,(r, y + w)2yw (2.25) 
y r, w 

Here we have used the expansion p = Po + PlPo [the unintegrated form of 
(2.2)], and also the symmetry of Po- Now the bounds on Ns(~y ) in (2.17) can 
be used to show that 

~,wpZ,+.y(r, y+w)w <~csgl-nT 1-0 (2.26) 

and using again l Yt ~< s, we bound the 2yz term by 

Z(s)cs2el-'?Tl-O ~cs2+ael-nTl-OZ(T) (2.27) 

Altogether we have shown that 

N(T) 
Z( T) = T - s +  O(s 2) + O(s 1 +ael-"T 1 -o) + O(s2+ae~-,Tl-O) (2.28) 

This can easily be replaced by the statement of the proposition. | 

In conclusion, we have shown that 0;>~k E) ~) is a sufficient condition 
for diffusion. On these sets, the asymptotic behavior of ( x  2) r,h is always T, 
with h-dependent corrections showing up only in terms growing as smaller 
powers of T. 
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3. P R O B A B I L I T Y  E S T I M A T E S  

In this section we show that with probability one, there is some k 
such that ~j>~kE) k) holds. By Proposition 2.2, this implies diffusion. Our 
basic estimate is on Probs(E)k)c), where Probs denotes the probability 
conditioned on the values of h(t, x) for t ~< s = 2 k - 1. 

P r o p o s i t i o n  3.1. For  any • > 0, let e be sufficiently small. Then 

Probs(E)k~c) ~< e~2-~(j k) (3.1) 

Proof. We rely on the following "perturbation theory" bounds, 
which are proven in the Appendix. Putting d ' =  min{d, 5}, we have 

Z(T1, T2) 2" ~< (ce)2mT{ (d 2)m/Z, (3.2) 

N(*)(T1, Tz)2m<~(Ce)2mTZm[1 (d' 2)/4], *=X2, X, or t (3.3) 

(The constants here are not uniform in m, but we keep m bounded.) These 
statements can be transformed into probabilistic statements: 

Prob(IZ(T1, T2)I >cAeI-"T{(d-z)/4+")<<-A-2meZm"T; -2m" (3.4) 

Prob(lN(*)(T1, T2) I >cAel-~T~ (d'-Z)/4+q)~ A-2mg, ZmrlT2 2m~l (3.5) 

We take r /< l /4 ,  so that for d > 2  we have O=(d' -2) /4-r l>O.  This 
additional decrease in T1 or T2 [-compared with N(T) or Z (T) ]  reflects the 
"irreducible" character of p~(t, x), from which the quantities Z(TI, T2) , 

N(*)(T1, T2) were defined. 
Taking into account the shift of origin, we estimate 

Prob(lZs.y(2 s, 2 J+  l)l > csel-"2-(J-k)~ ~s-2mt~2mq(2j-k) 2mrl (3.6) 

Here we use twice the fact that 2 j -  s >/2 s k. We apply this bound for each 
of 2 j possible values of l and each of O(s d) possible values of y. Recalling 
that s = 2 k - 1, we see that for large enough m, the probability that any one 
of the Zs, y(2 j, 2 J +  I) is large is less than e~2 ~j-k). Similarly, we have 

Prob(lN~*y)(2 s, 2 J +  l)[ > csel-~2 i(1-~ <~s 2me2rm/(2J--S) 2mrl (3.7) 

and again the probability of a fluctuation larger than permitted in (2.17) is 
less than e~2 -~(j-k). Finally, we consider fluctuations of Z~.y0(2J, 2J+ / ) .  
We now have dependence on h(t, x) for t>~s, because Yo is variable. 
However, if we condition on h(t, x) for t ~< s, we can regard Yo as fixed. 
Then by (3.4) we have 

Probs(lZ~,yo(2J, 2J+l)l>cel-~2 -(j k)O)~,Zrm/(2J--k)--2m~l (3.8) 
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If j >  k, this controls the sum over l, and the overall estimate is as in the 
right-hand side of (3.1). If j = k, we need to break up the range from s to 
2 j + l into intervals Is + 2 i, s + 2 ~ + Ii]. Then we have 

Probs(]Z~,y0(s+U, s + 2 ~ + / y  >8e~-~t2-i~ i) 2mrl (3.9) 

Now we can sum over the l~'s and over i to obtain for j = k 

Prob~(IZ,,y0(2J, 2J+l ) [  >ce 1 ~ for any 0 ~ < l < 2 J ) < e  2~" (3.10) 

This completes the proof of (3.1). II 

We now discuss a method for finding k such that (hj>~ E) ~) holds. To 
keep track of the procedure, define an indicator sequence/, ,  as follows: 

/ o = 0  

= ~ I,, if E(n in) 
In+x ( n + l  if E(~ I")" (3.11) 

This corresponds to a procedure whereby we look for the first n such that 
E~ (~ holds, then look for the first n' > n  such that E~(, ~+ ~/c holds, etc. The 
value of In is thus the current index k on which we are testing if 0j~>k E) k) 
holds. Our success at finding such a k depends on whether I~o = limn ~ ~ In 
is finite or not. 

P r o p o s i t i o n  3.2.  
for any n > 0, 

Furthermore, 

For  any x ' > 0 ,  let e be sufficiently small. Then 

Prob(Io~ = n) ~< (e2-n)K' (3.12) 

Prob(I~o = o o ) = 0  (3.13) 

ProoL There is an annoying dependence among the events E y  ~) due 
to the dependence on Yo- We take care of this by conditioning in such a 
way that only probabilities covered by Proposition 3.1 appear. It is 
worthwhile noticing that the indicator sequence is determined by those k 
such that I~ = k. After any such k, the sequence is constant at k until the 
next jump. Thus, it is automatically true that 

Prob(I~  = n) ~< Prob(In = n) (3.14) 

Put s k = 2  k -  1, and assume that the values h(t, x)  for t<~sk are such 
that Ik = k. Then we prove that 

Prob,,  ( I  = n) << (e2-(  ~ *))~' (3.15) 

822/52/3-4-7 



622 Imbrie and Spencer 

We work inductively, assuming the validity of (3.15) for k ' > k .  Condi- 
tioning on the time of the first discontinuity in I after k, we define Fk, to be 
the event that Ik, = k' and It = k for k ~< l < k'. Then 

Prob,~(In = n) ~< i Prob,k(Fk, ) Prob,~(I, = n lFk,) (3.16) 
k ' = k + l  

By Proposition 3.1, we have 

Probsk (Fk,) ~< Prob,k (Ek(,g~_Cl) ~< (e2-(k'-k-1~)~ (3.17) 

The second factor in (3.16) is covered by the induction hypothesis, since 

Prob~k (I, = n lFk,) ~ sup Probsk. (I, = n) (3.18) 

with the supremum over values of h(t, x), t ~ (sk, sk,] such that Fk, occurs. 
Thus, (3.16) is bounded by 

n 1 

(e2 (k '-k-1))~(e2-(n-k'))~'+(e2 -(n k-l))~<(~2-(~-k))~ '  (3.19) 
k ' = k + i  

where we choose ~ = ~c' + 1. This proves (3.15). 
We now obtain (3.12) by setting k = s k = O  in (3.15) and applying 

(3.14). It is immediate that Prob(I~  = oc ) =  0, since arbitrarily large values 
of I imply that there are arbitrarily large n such that I, = n. By (3.15) this 
has vanishing probability. | 

Proof of  Theorem 1. We have just shown that Ioo<oo with 
probability 1. If I~o =k ,  then by construction the event 0]~>k E) k) holds, 
and Proposition 2.2 implies the conclusion of Theorem 1. To estimate 
averaged quantities, we use (3.12), (2.9), and (2.19) to obtain 

I (co(T)2)r,h -- TI <~ ce 1 - " T  1-~ + ~ (s~ + cs~+2e ~ - " T  a -o)(e2-k)~' 
k = l  

~< c ~ I - , T  1-0 (3.20) 

which agrees with our earlier claim (1.7). | 

A P P E N D I X :  P E R T U R B A T I V E  E S T I M A T E S  

We prove (3.2) and (3.3) by directly controlling the graphical 
expansions of Z(T1, irE) :m and N(*)(T1, T2) 2m. The collection of graphs is 
slightly more complicated than the bubble chain we considered in 
estimating Z(T) 2. We consider Z(TI ,  T2) 2m first, with m fixed; no attempt 
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is made to derive estimates uniform in m. There are 2m walks, and a 
number of junctions (sl, x,),..., (sn, xn). At each junction an even number 
of the walks are specified to meet. All walks last at least until T1, and they 
terminate pairwise at junctions at times between T 1 and 7"2, inclusive. 
There may be more than one junction at any time si, but two such 
junctions must involve disjoint subsets of the walks. There is a factor of e2 
for each pair of walks at a junction, or e 2~' in all, n'>in. Note that 
h(s,x)2~=l for any k. Of course, each line 5q={(s i ,  xi), (sj, xfl}, 
corresponding to a walk running freely between junctions at times s i<  sj, 
gives rise to a propagator po(sj-si, xj-xi)=po(~).  The resulting 
expansion looks as follows: 

mT? 
Z(T1, T2) 2m= 2 E Z e2n' 1-[ Po(2y) 

n = m  {(s i ,x i )}~=l:sn~[T1,T2~ G ~ ' e G  

Here G is the collection of lines LP of the graph, with a consistent set of 
labelings describing which walk each line is part of. It is simple to estimate 
the number of graphs G with n junctions by c n, with c dependent on m. See 
Fig. 2.  

We now consider a fixed topological arrangement of lines, and sum 
over the junctions ( s ,  x~). We would like to obtain a behavior like 
(ce) 2'' T; -(d-2)'~/2. First, whenever four or more walks join at one junction, 
we may pretend that there are several junctions to be summed over 
independently, with any fixed assignment of walks to junctions. This gives 
an upper bound and simplifies the analysis. Next, we sum over (s~, x~) 

( 
TZ 

T1 

0 

Fig. 2. A typical term in the graphical expansion for Z(T1, T2) 2m, In this case, m=3. 
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Ti 

Fig. 3. After estimating the sum over (s .  x~), there remains a decrease (T~-s , , )  (d' 2~/4 

(T~-Sl) -(d'-2)/4, which is indicated by the wavy lines. 

where two walks terminate (necessarily between T1 and T2, though we can 
put Ta= ov for an upper bound). The two lines extending down from 
(st, xi) end at upper and lower junctions, (s., xu) and (sl, xl), respectively, 
with s.>~st. We use po(S~-Su, x~ -x . )  to control the sum over xi, 
and replace po(S~-Sl, x i - x t )  with its maximum value, which is 
O(1)(s~-st) -~/2, Summation over si yields an overall estimate of 
c(max{s.,  T 1 } - s l )  -(d/2-1), since s~>max{s . ,  T,}. At first, s. and st may 
be greater than T1, and this factor is not needed to sum over junctions at 
the top of the graph. As we proceed downward, however, s~ and then s.  will 
fall below T1, and we may then assign factors c(T~-s . )  -(d 2)/4 if s,, < T~ 
and also c(Tl--sl) (a-2~/4 if s t<  T1. (Diagrammatically, we draw wavy 
lines from T~ down to s. or st.) (See Fig. 3). 

Notice that after removing the two lines to (ss, x~), the resulting graph 
still has the property that every junction has two lines emanating 
downward, Furthermore, junctions below T~ have two lines emanating 
upward, either Po lines or wavy lines to T~. These properties will be 

(S~, X~) 

T1 

(Su, Xt ) 

T1 

Fig. 4. The estimate for s, < T~ preserves the number  of wavy lines dropping down from T~. 
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preserved as we work down the graph. We continue as above until all 
junctions above T~ are gone. At this point there are 2m wavy lines coming 
down from T1, one for each line of the original graph that crosses T 1. (See 
Fig. 4). 

We next sum over junctions with only wavy lines emanating upward. 
As before, (si, xi) is joined down to (su, x , )  and (sl, x~). Summation over x i 
yields a bound c ( T ~ -  si) -(d-2)/2 ( s i - s l )  -d/z, the first factor coming from 
the wavy lines. Summation of si from s, to T1 then yields a bound 

c(TI - st) -~d- 2)/2 ~< C( T l -- su) -Ca 2)/'4 ( T1 _ _  St ) -(d 2)/4 

as may be seen by considering separately the case s~>(T1 +st)~2, 
si<~ (T1 + st)~2. Thus we have produced wavy lines emanating up from 
(s,, x~) and (st, xt), and the process can continue. 

There remain always 2m wavy lines, so after summing over all 
junctions we have the desired bound 

mT2 
Z ( T 1 ,  T2)2m <~ ~ (cg)2n ( T l ( d -  2)/4)2m ~ (cg)2rn T l ( a  2)m/2 

n--m 

The corresponding estimate for N~*~(T~, T2) 2m proceeds along the 
same lines ( * = x ,  x 2, or t). After taking the 2mth power and averaging, 
there are m factors of x~ a or s~ associated with the final junctions of the 
walks. 

The case a = 1 should yield better estimates, but for simplicity we use 
x~ 4 x~ and consider only �9 = x 2 or t. The first step is to write 

x 4 ~< 4 E ( x , -  x , )  2 + x~] E ( x , -  x,) 2 + x~] 

and consider each of the four terms that result. As before, we sum over x~ 
using po(s~-s , ,  x~-x~) ,  and the factor ( x ~ - x , )  2 is traded for one of 
s ~ -  s~. Likewise, in taking the maximum of ( x~-  x~) 2 po ( s i -  s~, x i -  xt), we 
obtain an extra factor of s i - s v  In case �9 = t, we write s2=  [ s~+ ( s~-s~) ]  
[st + ( s i -  sz)]. In this way the effect of x 4 or s~ propagates down each walk, 
either as factors of x 2, s 2 lower down or as (s~-s~) or (s~-st).  Thus we 
have to estimate sums like 

Tz 

2 
s i = s u 

(S i -  Su)(Si__ SI)I - d/2 ~ e( T2 -- s~) 3- a ' / 2  

~ c ( T 2 _ s u ) l - ( d ' - 2 ) / 4  ( T 2 _ s z ) l  (d '  - 2)/4 

Here we use d ' = m i n { d ,  5) because for d~>6 the summation starts to 
become dominated by its lower limit, leading to different behavior, which 
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we do not  a t t empt  to follow. The  o ther  cases can be t rea ted  similarly,  
yielding an overal l  factor  

C[~u q_ ( T 2 _ _ s u ) l - ( d ' - 2 ) / 4 ] [ d l  + ( T  2 _ S l ) ,  (d'-- 2)/4"] 

where d = s ( ,  = t) or  d = x 2 ( ,  = x 2 or  x). 

As we proceed  down  the graph,  each junc t ion  will have p icked up 
factors 

C [Si + ( T2 - -  S i )  1 - (d'-- 2)/4 ] 2 ~ C~2i _}_ C( T 2 -- si) 2 - Ca'- 2)/2 

We have ana lyzed  the ~ term a l ready;  for the o ther  term we ob ta in  

( T 2 -  si) 2-~a' 2)/2 p o ( S i _  Su ' x i _  X u )  P o ( S i _  Sl ' x i _  x l )  
si, Xt 

7"2 
<<. y, c(T2_s,)2 ~d'-2)/2 (S _St)-d/2 

s i ~ s u 

<~ c(T2 _ S u ) 2 - ( d '  2)/2 

~ c ( T 2 _ G ) I  { a ' - z ) / a ( T 2 _ s t ) ~  /a'-2)/4 

which p roduces  terms of  the same type. In  the end these are the only 
remain ing  terms, and  we have the desired b o u n d  

N{*)(T1, T2)2m~(cg,) 2m T22 mEl-(d'-2)/4], * = X  2, X, or t 
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